
‹#› Het begint met een idee

Measurement theory basics

Ivano Malavolta

Vrije Universiteit Amsterdam

Concepts

Scale types

Homework

2 Ivano Malavolta / S2 group / Empirical software engineering

Roadmap

Vrije Universiteit Amsterdam

Measurement is the central part of empirical software
engineering

3 Ivano Malavolta / S2 group / Empirical software engineering

Measurement

We need to measure these

Vrije Universiteit Amsterdam

4 Ivano Malavolta / S2 group / Empirical software engineering

Measurement

Measurement: the process of assigning numbers or symbols
to attributes of entities in the real world

Mobile app

Real world Measures

150k lines of code

Highly usable

15k $

Measure:
the actual number or symbol assigned to an attribute of an entity

Vrije Universiteit Amsterdam

5 Ivano Malavolta / S2 group / Empirical software engineering

Conceptual framework

The overall goal of measuring is to trait entity attributes
formally (e.g., statistically) for making claims or decisions

Vrije Universiteit Amsterdam

6 Ivano Malavolta / S2 group / Empirical software engineering

Conceptual framework

Remember that we are measuring for answering questions

Usually a single metric is not sufficient to adequately answer
even an apparently simple question

→we will have a set of measures for each question, each
measure must be:
○ precise
○ reliable
○ valid

Vrije Universiteit Amsterdam

7 Ivano Malavolta / S2 group / Empirical software engineering

Preciseness

Preciseness: the size of a measure’s smallest unit

For example:
● does the height of a person need to be measured to the millimeter?
● does the energy consumption of a mobile app need to be measured to

the mJ?

Tip: the precision of any derived measures (e.g., the average) must have the
same precision of the original measured

e.g. the average height of Dutch people is 183.67893 cm
e.g. the average launch time of app X is 57 nanoseconds

Compound metrics: remember that the arithmetic combination of measures
propagates and magnifies the error inherent in the original values

Vrije Universiteit Amsterdam

8 Ivano Malavolta / S2 group / Empirical software engineering

Reliability

Reliability: measurements must be consistent across
repeated observations in the same circumstances

Relatively easy for physical measures, difficult for unstable or human-based
ones

e.g. energy consumption
launch time of a mobile app
rating scales

Typically quantified by:
- the standard deviation/coefficient of variation or
- other coefficient measures like the Cronbach’s coefficient alpha, or the

Cohen-Kappa coefficient
○ they can be viewed as a correlation among repeated measurements

Classical technique for mitigating unreliable measures: repetitions

Vrije Universiteit Amsterdam

9 Ivano Malavolta / S2 group / Empirical software engineering

Validity

A measure is valid if it:
● does not violate any properties of the attribute it measures
● is a proper mathematical characterization of the attribute

● Content validity: how the measure reflects the domain it is intended to
measure
○ e.g. measure program complexity according to the language used for

the names of the variables? No
● Criterion validity: how the measure reflects the measured object w.r.t. to

some criterion
○ e.g., a complexity measure should assign high values to programs

which are known to be highly complex
● Construct validity: how a measure actually represents the conceptual

entity of interest. e.g., #lines of code for measuring program size? Yes

Vrije Universiteit Amsterdam

10 Ivano Malavolta / S2 group / Empirical software engineering

Lines of code for program complexity?

Reliable
Easy to measure
How to interpret:

- empty lines
- comments
- several statements on one line

Language dependent
Is it related to complexity?

Vrije Universiteit Amsterdam

11 Ivano Malavolta / S2 group / Empirical software engineering

Scale types

Vrije Universiteit Amsterdam

● Most used scale types:
▪ Nominal
▪ Ordinal
▪ Interval
▪ Ratio

Choosing a scale for a variable means constraining the statistical
analysis that you can do on it

12 Ivano Malavolta / S2 group / Empirical software engineering

Scale types

Vrije Universiteit Amsterdam

You can see it as “tagging”

It maps the attribute of an entity to a name or symbol
e.g.
caching strategy: {no-cache, cache-only, cache-first, cache-network-race}

It is the least powerful from a statistical point of view

13 Ivano Malavolta / S2 group / Empirical software engineering

Nominal

Name Examples outside SE Examples inside SE Constraints

Vrije Universiteit Amsterdam

It ranks the entities after an ordering criterion
→ you can see it as “tagging with a given order”

Examples of criteria: “greater than”, “more complex”, “more recent”
e.g. type of available network connection: {wifi, 3G, 2G}

14 Ivano Malavolta / S2 group / Empirical software engineering

Ordinal

Name Examples outside SE Examples inside SE Constraints

Vrije Universiteit Amsterdam

Used when the difference between two measures are
meaningful, but not the value itself
Example – levels of satisfaction on a Likert scale

Similar to the ordinal scale, but there is a notion of “relative
distance” between two entities

15 Ivano Malavolta / S2 group / Empirical software engineering

Interval

Name Examples outside SE Examples inside SE Constraints

Vrije Universiteit Amsterdam

Used when:
▪ the values are ordered
▪ the values have equal intervals
▪ there is a meaningful zero value

Eg - energy consumption in Joules

16 Ivano Malavolta / S2 group / Empirical software engineering

Ratio

Name Examples outside SE Examples inside SE Constraints

Vrije Universiteit Amsterdam

17 Ivano Malavolta / S2 group / Empirical software engineering

Question: are “x” Joules a lot or not?

• In research the goal is almost always to compare different alternatives and
compare them against each other, it is not a good practice to focus on the
absolute numbers alone

• If you want to have/give an intuition about the values that you are going,
transform the Energy values (in Joules) into Battery lifetime (in seconds):

Assuming that your experiment was performed on a Google Nexus 5X
(battery capacity= 6700 mAh, voltage=3.8V)

Total energy in the battery (in Joules) = charge x (3600 / 1000) (mAh) x voltage (v)
Total energy = (6700 x 3.6) x 3.8 = 91656 J

If you have that on average the runs with treatment A last 2 minutes and consume 100J
91656 : X = 100 : 2 à X = (91656 x 2)/100 = 1833.12 minutes

Total lifetime of the battery: 1833.12 minutes ~= 30 hours
If the runs with treatment B consume 130J…

91656 : X = 200 : 2 à X = (91656 x 2)/130 = 1410 minutes ~= 23.5 hours
à1833.12 – 1410 = 423.12 minutes ~= 7 hours

àTreatment B can lead to a reduction of 7 hours of the battery life of a Nexus 5X

Vrije Universiteit Amsterdam

18 Ivano Malavolta / S2 group / Empirical software engineering

Some hints: repetitions

The general rule of thumb is to have 30 repetitions (I never saw more than
them)
But this number is relatively high, you should make the math according to
the design of your experiment and scale down this number accordingly in
order to make the experiment feasible.

For example, if we have the RQ about the image formats (jpeg vs png), 100
subject apps (50 with jpeg and 50 with png images), and 30 repetitions, the
execution time of the experiment is:

100 X 30 X (2 minutes of idle time between runs (this is standard) X 1 minute of
loading time of the app) = 9000 minutes = 150 hours = 6.25 days of sheer execution
time. In short: it is too long!

The rule of thumb for having a “good enough” experiment is about 30-40
hours, no more than that

Vrije Universiteit Amsterdam

19 Ivano Malavolta / S2 group / Empirical software engineering

Some hints: generalizability vs feasibility

Again, you need to do the math here and find a good trade-off.

Rule of thumb: For experiments involving only the initial load of a web app, you can have ~50
subjects.
For experiment involving the execution of usage scenarios (whose single run generally take
longer than simply loading the app and closing it) you can stay around 10-20 apps.

Of course, the more subjects the better, depending on the feasibility of the experiment.

Suggestion 1: split the experiment execution into batches, where the first one is the minimum
(according to the numbers above), then you add other subjects if you will have time.

Suggestion 2: do a full run of a “mini-version” of your experiment, for example by having only 2
subjects and 2 repetitions each. In this way you will:
• be sure that you are able to complete the experiment
• know already the structure of the measures, allowing you to already start working on the R

scripts for data analysis
- analysing the new data coming from the new subjects will just consist in rerunning the analysis scripts on the
new data

Vrije Universiteit Amsterdam

Now you know:

● The basics of software measurement theory

● How to define the measures

they will map 1:1 to your experiments variables

IMPORTANT!

The type of your measures will heavily impact

the statistical analysis you will perform

20 Ivano Malavolta / S2 group / Empirical software engineering

What this lecture means to you?

Vrije Universiteit Amsterdam

21 Ivano Malavolta / S2 group / Empirical software engineering

Readings

Chapter 3 Chapter 6

